路泰科技体检小程序UI设计新版本
qx
2025-08-06 fe97f78b9a343ee9fa45a3531d03d73dcd1df31b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
// Depends on jsbn.js and rng.js
// Version 1.1: support utf-8 encoding in pkcs1pad2
// convert a (hex) string to a bignum object
import { BigInteger, nbi, parseBigInt } from "./jsbn";
import { SecureRandom } from "./rng";
// function linebrk(s,n) {
//   var ret = "";
//   var i = 0;
//   while(i + n < s.length) {
//     ret += s.substring(i,i+n) + "\n";
//     i += n;
//   }
//   return ret + s.substring(i,s.length);
// }
// function byte2Hex(b) {
//   if(b < 0x10)
//     return "0" + b.toString(16);
//   else
//     return b.toString(16);
// }
function pkcs1pad1(s, n) {
    if (n < s.length + 22) {
        console.error("Message too long for RSA");
        return null;
    }
    var len = n - s.length - 6;
    var filler = "";
    for (var f = 0; f < len; f += 2) {
        filler += "ff";
    }
    var m = "0001" + filler + "00" + s;
    return parseBigInt(m, 16);
}
// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
function pkcs1pad2(s, n) {
    if (n < s.length + 11) { // TODO: fix for utf-8
        console.error("Message too long for RSA");
        return null;
    }
    var ba = [];
    var i = s.length - 1;
    while (i >= 0 && n > 0) {
        var c = s.charCodeAt(i--);
        if (c < 128) { // encode using utf-8
            ba[--n] = c;
        }
        else if ((c > 127) && (c < 2048)) {
            ba[--n] = (c & 63) | 128;
            ba[--n] = (c >> 6) | 192;
        }
        else {
            ba[--n] = (c & 63) | 128;
            ba[--n] = ((c >> 6) & 63) | 128;
            ba[--n] = (c >> 12) | 224;
        }
    }
    ba[--n] = 0;
    var rng = new SecureRandom();
    var x = [];
    while (n > 2) { // random non-zero pad
        x[0] = 0;
        while (x[0] == 0) {
            rng.nextBytes(x);
        }
        ba[--n] = x[0];
    }
    ba[--n] = 2;
    ba[--n] = 0;
    return new BigInteger(ba);
}
// "empty" RSA key constructor
var RSAKey = /** @class */ (function () {
    function RSAKey() {
        this.n = null;
        this.e = 0;
        this.d = null;
        this.p = null;
        this.q = null;
        this.dmp1 = null;
        this.dmq1 = null;
        this.coeff = null;
    }
    //#region PROTECTED
    // protected
    // RSAKey.prototype.doPublic = RSADoPublic;
    // Perform raw public operation on "x": return x^e (mod n)
    RSAKey.prototype.doPublic = function (x) {
        return x.modPowInt(this.e, this.n);
    };
    // RSAKey.prototype.doPrivate = RSADoPrivate;
    // Perform raw private operation on "x": return x^d (mod n)
    RSAKey.prototype.doPrivate = function (x) {
        if (this.p == null || this.q == null) {
            return x.modPow(this.d, this.n);
        }
        // TODO: re-calculate any missing CRT params
        var xp = x.mod(this.p).modPow(this.dmp1, this.p);
        var xq = x.mod(this.q).modPow(this.dmq1, this.q);
        while (xp.compareTo(xq) < 0) {
            xp = xp.add(this.p);
        }
        return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq);
    };
    //#endregion PROTECTED
    //#region PUBLIC
    // RSAKey.prototype.setPublic = RSASetPublic;
    // Set the public key fields N and e from hex strings
    RSAKey.prototype.setPublic = function (N, E) {
        if (N != null && E != null && N.length > 0 && E.length > 0) {
            this.n = parseBigInt(N, 16);
            this.e = parseInt(E, 16);
        }
        else {
            console.error("Invalid RSA public key");
        }
    };
    // RSAKey.prototype.encrypt = RSAEncrypt;
    // Return the PKCS#1 RSA encryption of "text" as an even-length hex string
    RSAKey.prototype.encrypt = function (text) {
        var maxLength = (this.n.bitLength() + 7) >> 3;
        var m = pkcs1pad2(text, maxLength);
        if (m == null) {
            return null;
        }
        var c = this.doPublic(m);
        if (c == null) {
            return null;
        }
        var h = c.toString(16);
        var length = h.length;
        // fix zero before result
        for (var i = 0; i < maxLength * 2 - length; i++) {
            h = "0" + h;
        }
        return h;
    };
    // RSAKey.prototype.setPrivate = RSASetPrivate;
    // Set the private key fields N, e, and d from hex strings
    RSAKey.prototype.setPrivate = function (N, E, D) {
        if (N != null && E != null && N.length > 0 && E.length > 0) {
            this.n = parseBigInt(N, 16);
            this.e = parseInt(E, 16);
            this.d = parseBigInt(D, 16);
        }
        else {
            console.error("Invalid RSA private key");
        }
    };
    // RSAKey.prototype.setPrivateEx = RSASetPrivateEx;
    // Set the private key fields N, e, d and CRT params from hex strings
    RSAKey.prototype.setPrivateEx = function (N, E, D, P, Q, DP, DQ, C) {
        if (N != null && E != null && N.length > 0 && E.length > 0) {
            this.n = parseBigInt(N, 16);
            this.e = parseInt(E, 16);
            this.d = parseBigInt(D, 16);
            this.p = parseBigInt(P, 16);
            this.q = parseBigInt(Q, 16);
            this.dmp1 = parseBigInt(DP, 16);
            this.dmq1 = parseBigInt(DQ, 16);
            this.coeff = parseBigInt(C, 16);
        }
        else {
            console.error("Invalid RSA private key");
        }
    };
    // RSAKey.prototype.generate = RSAGenerate;
    // Generate a new random private key B bits long, using public expt E
    RSAKey.prototype.generate = function (B, E) {
        var rng = new SecureRandom();
        var qs = B >> 1;
        this.e = parseInt(E, 16);
        var ee = new BigInteger(E, 16);
        for (;;) {
            for (;;) {
                this.p = new BigInteger(B - qs, 1, rng);
                if (this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) {
                    break;
                }
            }
            for (;;) {
                this.q = new BigInteger(qs, 1, rng);
                if (this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) {
                    break;
                }
            }
            if (this.p.compareTo(this.q) <= 0) {
                var t = this.p;
                this.p = this.q;
                this.q = t;
            }
            var p1 = this.p.subtract(BigInteger.ONE);
            var q1 = this.q.subtract(BigInteger.ONE);
            var phi = p1.multiply(q1);
            if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
                this.n = this.p.multiply(this.q);
                this.d = ee.modInverse(phi);
                this.dmp1 = this.d.mod(p1);
                this.dmq1 = this.d.mod(q1);
                this.coeff = this.q.modInverse(this.p);
                break;
            }
        }
    };
    // RSAKey.prototype.decrypt = RSADecrypt;
    // Return the PKCS#1 RSA decryption of "ctext".
    // "ctext" is an even-length hex string and the output is a plain string.
    RSAKey.prototype.decrypt = function (ctext) {
        var c = parseBigInt(ctext, 16);
        var m = this.doPrivate(c);
        if (m == null) {
            return null;
        }
        return pkcs1unpad2(m, (this.n.bitLength() + 7) >> 3);
    };
    // Generate a new random private key B bits long, using public expt E
    RSAKey.prototype.generateAsync = function (B, E, callback) {
        var rng = new SecureRandom();
        var qs = B >> 1;
        this.e = parseInt(E, 16);
        var ee = new BigInteger(E, 16);
        var rsa = this;
        // These functions have non-descript names because they were originally for(;;) loops.
        // I don't know about cryptography to give them better names than loop1-4.
        var loop1 = function () {
            var loop4 = function () {
                if (rsa.p.compareTo(rsa.q) <= 0) {
                    var t = rsa.p;
                    rsa.p = rsa.q;
                    rsa.q = t;
                }
                var p1 = rsa.p.subtract(BigInteger.ONE);
                var q1 = rsa.q.subtract(BigInteger.ONE);
                var phi = p1.multiply(q1);
                if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
                    rsa.n = rsa.p.multiply(rsa.q);
                    rsa.d = ee.modInverse(phi);
                    rsa.dmp1 = rsa.d.mod(p1);
                    rsa.dmq1 = rsa.d.mod(q1);
                    rsa.coeff = rsa.q.modInverse(rsa.p);
                    setTimeout(function () { callback(); }, 0); // escape
                }
                else {
                    setTimeout(loop1, 0);
                }
            };
            var loop3 = function () {
                rsa.q = nbi();
                rsa.q.fromNumberAsync(qs, 1, rng, function () {
                    rsa.q.subtract(BigInteger.ONE).gcda(ee, function (r) {
                        if (r.compareTo(BigInteger.ONE) == 0 && rsa.q.isProbablePrime(10)) {
                            setTimeout(loop4, 0);
                        }
                        else {
                            setTimeout(loop3, 0);
                        }
                    });
                });
            };
            var loop2 = function () {
                rsa.p = nbi();
                rsa.p.fromNumberAsync(B - qs, 1, rng, function () {
                    rsa.p.subtract(BigInteger.ONE).gcda(ee, function (r) {
                        if (r.compareTo(BigInteger.ONE) == 0 && rsa.p.isProbablePrime(10)) {
                            setTimeout(loop3, 0);
                        }
                        else {
                            setTimeout(loop2, 0);
                        }
                    });
                });
            };
            setTimeout(loop2, 0);
        };
        setTimeout(loop1, 0);
    };
    RSAKey.prototype.sign = function (text, digestMethod, digestName) {
        var header = getDigestHeader(digestName);
        var digest = header + digestMethod(text).toString();
        var m = pkcs1pad1(digest, this.n.bitLength() / 4);
        if (m == null) {
            return null;
        }
        var c = this.doPrivate(m);
        if (c == null) {
            return null;
        }
        var h = c.toString(16);
        if ((h.length & 1) == 0) {
            return h;
        }
        else {
            return "0" + h;
        }
    };
    RSAKey.prototype.verify = function (text, signature, digestMethod) {
        var c = parseBigInt(signature, 16);
        var m = this.doPublic(c);
        if (m == null) {
            return null;
        }
        var unpadded = m.toString(16).replace(/^1f+00/, "");
        var digest = removeDigestHeader(unpadded);
        return digest == digestMethod(text).toString();
    };
    return RSAKey;
}());
export { RSAKey };
// Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext
function pkcs1unpad2(d, n) {
    var b = d.toByteArray();
    var i = 0;
    while (i < b.length && b[i] == 0) {
        ++i;
    }
    if (b.length - i != n - 1 || b[i] != 2) {
        return null;
    }
    ++i;
    while (b[i] != 0) {
        if (++i >= b.length) {
            return null;
        }
    }
    var ret = "";
    while (++i < b.length) {
        var c = b[i] & 255;
        if (c < 128) { // utf-8 decode
            ret += String.fromCharCode(c);
        }
        else if ((c > 191) && (c < 224)) {
            ret += String.fromCharCode(((c & 31) << 6) | (b[i + 1] & 63));
            ++i;
        }
        else {
            ret += String.fromCharCode(((c & 15) << 12) | ((b[i + 1] & 63) << 6) | (b[i + 2] & 63));
            i += 2;
        }
    }
    return ret;
}
// https://tools.ietf.org/html/rfc3447#page-43
var DIGEST_HEADERS = {
    md2: "3020300c06082a864886f70d020205000410",
    md5: "3020300c06082a864886f70d020505000410",
    sha1: "3021300906052b0e03021a05000414",
    sha224: "302d300d06096086480165030402040500041c",
    sha256: "3031300d060960864801650304020105000420",
    sha384: "3041300d060960864801650304020205000430",
    sha512: "3051300d060960864801650304020305000440",
    ripemd160: "3021300906052b2403020105000414"
};
function getDigestHeader(name) {
    return DIGEST_HEADERS[name] || "";
}
function removeDigestHeader(str) {
    for (var name_1 in DIGEST_HEADERS) {
        if (DIGEST_HEADERS.hasOwnProperty(name_1)) {
            var header = DIGEST_HEADERS[name_1];
            var len = header.length;
            if (str.substr(0, len) == header) {
                return str.substr(len);
            }
        }
    }
    return str;
}
// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
// function RSAEncryptB64(text) {
//  var h = this.encrypt(text);
//  if(h) return hex2b64(h); else return null;
// }
// public
// RSAKey.prototype.encrypt_b64 = RSAEncryptB64;