package com.ltkj.common.utils;
|
|
import java.util.concurrent.locks.ReentrantLock;
|
|
/**
|
* 描述: Twitter的分布式自增ID雪花算法snowflake (Java版)
|
* * Twitter_Snowflake<br>
|
* SnowFlake的结构如下(每部分用-分开):<br>
|
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
|
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
|
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
|
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
|
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
|
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
|
* 加起来刚好64位,为一个Long型。<br>
|
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
|
* @author Administrator
|
*
|
*/
|
public class SnowFlake {
|
|
|
|
private static SnowFlake snowFlake;
|
private static ReentrantLock lock = new ReentrantLock();
|
|
public static SnowFlake getInstance() {
|
if (snowFlake == null) {
|
lock.lock();
|
if (snowFlake == null) {;
|
datacenterId = Long.valueOf(StringUtils.nvl(null, "1"));
|
machineId = Long.valueOf(StringUtils.nvl(null, "1"));
|
snowFlake = new SnowFlake(datacenterId,machineId);
|
}
|
lock.unlock();
|
}
|
return snowFlake;
|
}
|
/**
|
* 起始的时间戳
|
*/
|
private final static long START_STMP = 1480166465631L;
|
|
/**
|
* 每一部分占用的位数
|
*/
|
private final static long SEQUENCE_BIT = 12; //序列号占用的位数
|
private final static long MACHINE_BIT = 5; //机器标识占用的位数
|
private final static long DATACENTER_BIT = 5;//数据中心占用的位数
|
|
/**
|
* 每一部分的最大值
|
*/
|
private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
|
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
|
private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
|
|
/**
|
* 每一部分向左的位移
|
*/
|
private final static long MACHINE_LEFT = SEQUENCE_BIT;
|
private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
|
private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;
|
|
private static long machineId; //机器标识(0~31)
|
private static long datacenterId; //数据中心(0~31)
|
private long sequence = 0L; //序列号
|
private long lastStmp = -1L;//上一次时间戳
|
|
public SnowFlake(long datacenterId, long machineId) {
|
if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
|
throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
|
}
|
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
|
throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
|
}
|
SnowFlake.datacenterId = datacenterId;
|
SnowFlake.machineId = machineId;
|
}
|
|
/**
|
* 产生下一个ID
|
*
|
* @return
|
*/
|
public synchronized long nextId() {
|
long currStmp = getNewstmp();
|
//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
|
if (currStmp < lastStmp) {
|
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
|
}
|
//如果是同一时间生成的,则进行毫秒内序列
|
if (currStmp == lastStmp) {
|
//相同毫秒内,序列号自增
|
sequence = (sequence + 1) & MAX_SEQUENCE;
|
//同一毫秒的序列数已经达到最大
|
if (sequence == 0L) {
|
currStmp = getNextMill();
|
}
|
} else {
|
//不同毫秒内,序列号置为0
|
sequence = 0L;
|
}
|
//上次生成ID的时间截
|
lastStmp = currStmp;
|
//移位并通过或运算拼到一起组成64位的ID
|
return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
|
| datacenterId << DATACENTER_LEFT //数据中心部分
|
| machineId << MACHINE_LEFT //机器标识部分
|
| sequence; //序列号部分
|
}
|
|
private long getNextMill() {
|
long mill = getNewstmp();
|
while (mill <= lastStmp) {
|
mill = getNewstmp();
|
}
|
return mill;
|
}
|
|
private long getNewstmp() {
|
return System.currentTimeMillis();
|
}
|
|
public static void main(String[] args) {
|
SnowFlake snowFlake = new SnowFlake(1, 1);
|
|
long start = System.currentTimeMillis();
|
for (int i = 0; i < 10; i++) {
|
System.out.println(snowFlake.nextId());
|
}
|
|
System.out.println(System.currentTimeMillis() - start);
|
|
|
}
|
}
|